দুই চলকবিশিষ্ট সরল সহসমীকরণে দুইটি সরল সমীকরণ থাকে। দুইটি সরল সমীকরণের জন্য লেখ অঙ্কন করলে দুইটি সরলরেখা পাওয়া যায়। এদের ছেদবিন্দুর স্থানাঙ্ক উভয় সরলরেখায় অবস্থিত। এই ছেদবিন্দুর স্থানাঙ্ক অর্থাৎ (x, y) প্রদত্ত সরল সহসমীকরণের মূল হবে। x ও y -এর প্রাপ্ত মান দ্বারা সমীকরণ দুইটি যুগপৎ সিদ্ধ হবে । অতএব, সরল সহসমীকরণ যুগলের একমাত্র সমাধান যা, ছেদবিন্দুটির ভুজ ও কোটি। মন্তব্য : সরলরেখা দুইটি সমান্তরাল হলে, প্রদত্ত সহসমীকরণের কোনো সমাধান নেই।
উদাহরণ ৬। লেখের সাহায্যে সমাধান কর :
x + y = 7..…………(i)
x - y =1……………….(ii)
সমাধান : প্রদত্ত সমীকরণ (i) হতে পাই,
y = 7 - x…………….(iii)
x এর বিভিন্ন মানের জন্য y এর মান বের করে নিচের ছকটি তৈরি করি :
x | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
y | 9 | 8 | 7 | 6 | 5 | 4 | 3 |
ছক-১
আবার, সমীকরণ (ii) হতে পাই,
y = x - 1…………….…(iv)
x এর বিভিন্ন মানের জন্য y এর মান বের করে নিচের ছকটি তৈরি করি :
x | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
y | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
ছক-২
মনে করি, XOX' ও YOY' যথাক্রমে x -অক্ষ ও y-অক্ষ এবং o মূলবিন্দু।
উভয় অক্ষের ক্ষুদ্রতম বর্গের প্রতিবাহুর দৈর্ঘ্যকে একক ধরি। ছক-১ এ (-2, 9), (–1, 8), (0, 7), (1, 6), (2, 5), (3, 4) ও ( 4, 3 ) বিন্দুগুলোকে ছক কাগজে স্থাপন করি । এই বিন্দুগুলো যোগ করে উভয় দিকে বর্ধিত করে সমীকরণ (i) দ্বারা নির্দেশিত সরলরেখাটির লেখ পাই,
আবার, ছক-২ এ (−2, – 3), (–1, – 2), (0, – 1), (1, 0), (2, 1), (3, 2) ও ( 4, 3 ) বিন্দুগুলো ছক কাগজে স্থাপন করি। এই বিন্দুগুলো যোগ করে (ii) নং সমীকরণ দ্বারা নির্দেশিত সরলরেখাটির লেখ পাই। এই সরলরেখাটি পূর্বোক্ত সরলরেখাকে A বিন্দুতে ছেদ করে। A বিন্দু উভয় সরলরেখার সাধারণ বিন্দু। এর স্থানাঙ্ক উভয় সমীকরণকে সিদ্ধ করে। লেখ থেকে দেখা যায়, A বিন্দুর ভুজ 4 এবং কোটি 3 । নির্ণেয় সমাধান (x,y) = ( 4, 3)
উদাহরণ ৭। লেখের সাহায্যে সমাধান কর :
3x + 4y - 10…………..(i)
x - y = 1……………(ii)
সমীকরণ (i) হতে পাই,
4y = 10 -3x
x এর বিভিন্ন মানের জন্য y এর মান বের করে নিচের ছকটি তৈরি করি
x | -2 | 0 | 2 | 4 | 6 |
y | 4 | 1 | -2 |
ছক-১
(ii) এর সমীকরণ হতে পাই,
y=x-1
x এর বিভিন্ন মানের জন্য y এর মান বের করে নিচের ছকটি তৈরি করি :
x | -2 | 0 | 2 | 4 | 6 |
y | -3 | -1 | 1 | 3 | 5 |
ছক-২
মনে করি, XOX' ও YOY' যথাক্রমে x- অক্ষ ও y-অক্ষ এবং 0 মূলবিন্দু।
উভয় অক্ষের ক্ষুদ্রতম বর্গের প্রতিবাহুর দৈর্ঘ্যকে একক ধরি । ছক-১ এ (-2, 4), (2, 1), ও (6, -2)
বিন্দুগুলোকে লেখ কাগজে স্থাপন করি । এই বিন্দুগুলো যোগ করে উভয় দিকে বর্ধিত করে একটি সরলরেখা পাওয়া গেল। যা (i) নং সমীকরণ দ্বারা নির্দেশিত সরলরেখার লেখচিত্র।
আবার, ছক-২ এ (−2, – 3), (0, – 1), (2, 1), ( 4, 3 ) ও (6, 5) বিন্দুগুলো লেখ কাগজে স্থাপন করি। এই বিন্দুগুলো যোগ করে উভয় দিকে বর্ধিত করে একটি সরলরেখা পাওয়া গেল । যা, (ii) নং সমীকরণ দ্বারা নির্দেশিত সরলরেখার লেখচিত্র।
এই সরলরেখাটি পূর্বোক্ত সরলরেখাকে A বিন্দুতে ছেদ করে। A বিন্দু উভয় সরলরেখার সাধারণ বিন্দু। এর স্থানাঙ্ক উভয় সমীকরণকে সিদ্ধ করে। লেখ থেকে দেখা যায় যে, A বিন্দুর ভুজ 2 এবং কোটি 1 । নির্ণেয় সমাধান (x, y) = (2, 1)